21 research outputs found

    Details of Deformable Part Models for Automatically Georeferencing Historical Map Images

    Get PDF
    Libraries are digitizing their collections of maps from all eras, generating increasingly large online collections of historical cartographic resources. Aligning such maps to a modern geographic coordinate system greatly increases their utility. This work presents a method for such automatic georeferencing, matching raster image content to GIS vector coordinate data. Given an approximate initial alignment that has already been projected from a spherical geographic coordinate system to a Cartesian map coordinate system, a probabilistic shape-matching scheme determines an optimized match between the GIS contours and ink in the binarized map image. Us- ing an evaluation set of 20 historical maps from states and regions of the U.S., the method reduces average alignment RMSE by 12%

    Deformable Part Models for Automatically Georeferencing Historical Map Images

    Get PDF
    Libraries are digitizing their collections of maps from all eras, generating increasingly large online collections of historical cartographic resources. Aligning such maps to a modern geographic coordinate system greatly increases their utility. This work presents a method for such automatic georeferencing, matching raster image content to GIS vector coordinate data. Given an approximate initial alignment that has already been projected from a spherical geographic coordinate system to a Cartesian map coordinate system, a probabilistic shape-matching scheme determines an optimized match between the GIS contours and ink in the binarized map image. Using an evaluation set of 20 historical maps from states and regions of the U.S., the method reduces average alignment RMSE by 12%

    Techniques and applications for persistent backgrounding in a humanoid torso robot

    Get PDF
    Abstract-One of the most basic capabilities for an agent with a vision system is to recognize its own surroundings. Yet surprisingly, despite the ease of doing so, many robots store little or no record of their own visual surroundings. This paper explores the utility of keeping the simplest possible persistent record of the environment of a stationary torso robot, in the form of a collection of images captured from various pan-tilt angles around the robot. We demonstrate that this particularly simple process of storing background images can be useful for a variety of tasks, and can relieve the system designer of certain requirements as well. We explore three uses for such a record: auto-calibration, novel object detection with a moving camera, and developing attentional saliency maps
    corecore